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１．はじめに

　2024年1月1日16時10分に石川県珠洲市を震源として令
和6年（2024年）能登半島地震（M7.6，最大震度7）が
発生し，地震動や津波により甚大な被害が生じた．震源
地である珠洲市付近では，令和6年能登半島地震に先立
ち局所的な地殻変動を伴う群発地震活動が数年に渡り継
続し，この群発地震の震源域に令和6年能登半島地震の
震源も位置する．これらの一連の活動の成因を解明する
ために様々な調査観測が実施されている．本解説では，
能登半島北東部の群発地震および令和6年能登半島地震
について，地球物理学的な調査結果を中心に紹介する．

２．群発地震：地震活動

　能登半島北東部では，2018年半ばから地震数が増加
し，2020年12月頃からさらに活発化し，群発的な地震活
動が継続していた．能登半島北東部の群発地震の精密震
源決定結果（図1）から，以下のことが明らかとなった

（e.g. Amezawa et al., 2023; Yoshida et al., 2023a）．（1） 
群発地震の活動域は4つの領域（クラスター）に区分さ
れ，南クラスターから始まった活動は，西，北，東クラ
スターへと順に拡大した．（2） 西，北，東クラスターは
主に複数の南東傾斜の震源分布を示し，複数の南東傾斜
の断層が推定される．（3） 各クラスターで流体圧拡散モ
デルに従う震源移動が認められ，西，北，東クラスター
では拡散定数が約10-1（m2/s） であり，南東傾斜の断層帯
中を流体が上昇した．（4） 南クラスターは15 km以深で
の間欠的な地震活動が特徴的であり，その震源移動は〜
102（m2/s） の拡散定数で説明でき，間欠的な大量の流体
上昇を示唆する．（5） 南クラスターの15 km以深の震源
は円環状の分布を示し，また南クラスターはカルデラ状
の地下構造が推定される低重力異常域であること（澤
田・平松, 2022）から，日本海拡大期の火山活動に関連
した構造を用いて，南クラスターでの流体上昇や地震活
動が発生していると考えられる．
　2023年5月5日には東クラスターの震源域の上端付近で
M6.5の地震が発生した．M6.5の地震の精密な余震分布
から，一連の群発地震が発生している断層は，能登半島

北岸沖合の海底活断層とは異なる伏在断層であることが
明らかとなった（Yoshida et al., 2023b; Kato, 2024）．こ
の結果は，海底地震観測結果からも支持される（蔵下・
他, 2024）．3次元地震波速度構造として，南クラスター
の15 km以深の領域は高Vp，低Vs，高Vp/Vsを示し，
流体の存在を示唆する（Okada et al., 2024）．

３．群発地震：非定常地殻変動

　群発地震活動が活発化した2020年12月頃から，能登半
島北東部では局所的に非定常地殻変動が観測された．群
発地震の震源域周辺での臨時GNSS観測等の結果，震源
域から放射状に広がる水平変位と震源域周辺での隆起が
確認された．その変動源は非地震性の断層運動，すなわ
ち南東傾斜した断層でのゆっくりとした開口と逆断層型
の断層運動（スロースリップ）により説明され，2020年
12月から2022年6月までの期間に地下深部から上昇した
流体の総量は約2900万m3と推定されている（Nishimura 
et al., 2023）．この変動源は南クラスターと他のクラス
ター間の非地震活動域に位置する．この変動源による歪
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図 1. 能登半島北東部の群発地震活動（M1.5 以

上、hypoDD(Waldhauser and Ellsworth 2000)に

よる精密震源決定結果）。右上図中の矩形は

Nishimura et al. (2023)の Period C における

地殻変動源のせん断開口断層を表す。 

図１　�能登半島北東部の群発地震活動（M1.5以上、
hypoDD(Waldhauser and Ellsworth, 2000)によ
る精密震源決定結果）。右上図中の矩形は
Nishimura et al. (2023)のPeriod Cにおける地殻
変動源のせん断開口断層を表す。
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変化により，浅部の断層帯では逆断層型の断層運動を促
進する力が働き，断層への流体の浸透とともにこの力に
より，群発地震活動が長期間継続した．

４．群発地震：電磁気観測

　地下の流体の分布を調べるために，2021年と2022年の
冬季に群発地震震源域周辺で臨時電磁気観測が実施され
た．また，2022年，2023年，2024年には沿岸域での海底
電磁気観測が実施された．陸域での観測データの解析か
ら，主として南クラスターの15 km以深に低比抵抗領域
が分布することが示され，流体に富む領域であると解釈
される（吉村・他, 2024）．また，西，北，東クラスター
の地震活動の震源域はこの低比抵抗領域の上端外縁部に
位置する．これらより，一連の群発地震活動への流体の
関与，つまり南クラスター深部から流体が上昇し，他の
クラスターへ移動したことが示唆される．

５．令和6年能登半島地震

　令和6年能登半島地震の震源は群発地震の震源域に位
置し，その余震は約150 kmの範囲に分布する（図2）．
日本海における大規模地震に関する調査検討会による断
層モデルではF43とF42，日本海地震・津波調査プロジ
ェクトによる断層モデルではNT2からNT9が概ねこの
余震分布に対応している（図2）．余震分布は，その北東
部を除いて，南東傾斜を示し，海底地震計を用いた観測
結果（篠原・他, 2024）等から能登半島北岸沖合の海底
活断層が震源断層であると考えられている．余震の精密

震源決定結果から，震源付近の本震および余震の震源は
一つの面上に分布し，群発地震の東クラスター（2023年
のM6.5の地震の本震及びその余震）や西クラスターの
地震もその面上に位置する．この面は能登半島北岸沖の
海底活断層の深部延長には位置せず，群発地震を起こし
ていた地下の伏在断層で本震の断層破壊が起こったこと
が示唆される（Yoshida et al., 2024）．すなわち，令和6
年能登半島地震は断層への流体の浸透と非地震性の断層
運動の両方の影響を受け，励起されたと考えられる．
　この断層破壊が海底活断層の断層面へ連鎖的に伝播
し，最終的にM7.6の地震規模となった．令和6年能登半
島地震の震源過程の推定は地震波形データ，地殻変動デ
ータ，津波波形データ等を用いて多くなされている．浅
野・岩田（2024）は強震波形を用い，余震分布に基づき
2枚の断層面を設定し，まず南西側への破壊が起こり，
その13秒後に北東側への破壊開始が生じたことを報告し
ている．南西側の断層面での輪島市門前町付近及び北東
側の断層面での能登半島北東沖での断層浅部での大きな
すべりは，能登半島北西部の海岸での最大約5 mに達す
る地盤隆起と珠洲市や能登町で大きな被害を及ぼした津
波の原因となる海底での地殻変動をそれぞれ生じた．
　GNSS観測からは能登半島北部を中心に地震時変位と
して，西向きに最大2 m程度の水平変位，能登半島の北
岸で最大2 m程度の上下変位が記録された．余効変動と
しては令和6年能登半島地震後4 ヶ月間で水平方向に最
大約3 cm，上下方向では最大約6 cmの沈降が観測され，
マントルの粘弾性緩和が主要因であると考えられている

（西村・他, 2024）．
　令和６年能登半島地震の断層運動により，震源域周辺
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図 2. 令和６年能登半島地震の余震（M2.0 以上、hypoDD(Waldhauser and Ellsworth 2000)による精

密震源決定結果）と既往断層モデルの関係。（左）日本海における大規模地震に関する調査検討会に

よる断層モデル、（右）日本海地震・津波調査プロジェクトによる断層モデル。 

図２　�令和６年能登半島地震の余震（M2.0以上、hypoDD(Waldhauser and Ellsworth, 2000)による精密震源決定結果）
と既往断層モデルの関係。（左）日本海における大規模地震に関する調査検討会による断層モデル、（右）日本海
地震・津波調査プロジェクトによる断層モデル。
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の断層帯ではクーロン破壊応力変化の増減により，断層
運動が促進される断層帯と抑制される断層帯が生じた．
断層運動が促進される断層帯としては，佐渡島周辺，石
川県西方沖の海域，石川県や富山県の平野部の断層帯等
が挙げられる．
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